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ABSTRACT

Granular soil is represented in this work by 2-D random

arrays of elastic, rough, quartz spheres using the "distinct

element" method. The 3-D computer code TRUBAL, originally

developed by Peter Cundall, has been modified at RPI by the

introduction of a general solution to the Hertz-Mindlin contact

problem. This has been achieved by attaching a subroutine to

the original code, which describes the nonlinear

force-displacement relationship at the intergranular contacts,

by means of plasticity theory and kinematic hardening. The

above modified program (CONBAL-2), developed as part of another

RPI project, can perform 2-D simulations and has already been

used to study the dynamic small strain behavior as well as the

large strain behavior of sand. The 2-D small strain

simulations in this report include the determination of

compressional wave velocities for isotropically and

anisotropically loaded random arrays of spheres. The results

are compared with excellent agreement to existing analytical

and numerical solutions, as well as to experiments performed on

the large triaxial cubical specimen at the University of Texas.

It is found that the fabric of the material plays a very

important role in the above phenomena. In all stages of the

simulations, the observed macroscopic phenomena are related to

the microscopic phenomena at the interparticle contact level.
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INTRODUCTION

Since the early 1960's, a large number of experimental

studies has been performed on the small strain behavior of sand

aiming at providing empirical correlations for practical use

(Hardin and Richart, 1963, Hardin and Black, 1966, Drnevich and

Richart, 1970, Dobry et al, 1982). The equations relating the

shear modulus, Gmax? to the void ratio, e, and the effective

confining pressure, oo, proposed by Hardin and Richart (1963),

Seed and Idriss (1970) and Seed et al (1984) are especially

important to this report. These empirical relationships are

based on the assumption that the soil can be treated as an

elastic, isotropic solid. In all three correlations:

Gm A f(e) i (1)ax'

where A is a constant, f(e) is an experimentally defined

function of the void ratio, e, - = 1/3(W 1 + 2 + j3) is the

mean effective stress, and p is an experimentally defined

exponent which has been found to be approximately 0.5. The

above empirical relations assume that the value of GmaX (and

thus, the wave velocity, Vs = VGmax/P, where P is the mass

density of the soil), is the same for isotropically and

anisotropically loaded sand, provided that the effective mean

stress, a, is the same. Furthermore, all correlations assume

0



2

that for the anisotropic loading case, Gmax and Vs do not

change in direction.

These assumptions for Gmax in sands have been challenged

by the experimental results obtained by Schmertmann (1978),

Roesler (1979), Knox et al (1982), and Yu and Richart (1984).

It was established by these researchers that both the

compressional, Vp, and shear, V., wave velocities depend on the

stresses in the direction of wave propagation and particle

motion polarization, and not on the effective mean stress.

Stokoe et al (1980) developed at the University of Texas

at Austin a large scale, 7 X 7 X 7 ft cubical triaxial facility

for the specific purpose of measuring Vs and Vp in dry sand.

In this facility, a triaxial state of stress, 1 0 2 * 03

in dry sand) can be achieved. All tests performed to date at

the University of Texas have used a locally found, medium to

fine, washed mortar sand classified as SP, with effective grain

size, D10, 0.28 mm and a uniformity coefficient, Cu, of 1.7.
The sand is placed by the raining technique and tested dry.

The values of the principal stresses have ranged between 15 psi

and 40 psi, with the stress ratio, K = 01/03 = 1 to 2.67.

Kopperman et al (1982) used this facility to study the effect

of the stresses on the propagation velocity of compressional

waves, V p They caused P-waves to propagate along one of thepfth
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principal stresses (oa ), while varying the others; they

concluded that:

VP = L o (fps)(2
(2).

where L = 220 to 290 and m = 0.20 to 0.24 are experimentally

defined constants. The sensitivity of Vp on aa and its

* insesitivity to variations in the other two principal stresses,

b and ac perpendicular to wave propagation is illustrated in

Fig. 1.

In a similar way, Knox et al (1982) studied the

propagation of shear waves under anisotropic conditions and t

concluded that:

ma nib mc (3)Vs  --F a -amb0c (p )(3) 0
a b c (fps

where F is a constant, ma u mb = 0.09 to 0.12, and mc = 0 to N

0.01. Thus, in these two cases the experimental findings of

Schmertmann (1978) and Roesler (1979) were confirmed, and it

was established that empirical correlations, such as Eq. 1, do .

not adequately describe the behavior of anisotropically loaded

sand, and they need to be revised and upgraded. In most cases

sand is anisotropically loaded, and more than 2 elastic

constants may be needed. For example, if a = a2 0 a3P the soil

- * * ~ IN
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will behave as a transversely isotropic medium and 5 constants

(moduli) will be needed; in the more general case of 1 0 2 

the sand may behave as an orthotropic continuum and at

least 9 constants may be required (Sokclnikoff, 1956).

This contradiction between the early and the more recent

laboratory data indicates that the constitutive modelling

phenomenon of soils at small strains is more complex than

originally anticipated. While it is true that a number of

phenomenological continuum models of the small strain (elastic)

response of sand have been proposed (Rowe, 1971, Coon and Evans

1971, Lade and Nelson, 1988), they apply only to isotropic

sands. On the other hand, experimental studies by Oda (1974),

Oda and Konishi (1974) , Oda et al (1983, 1985) have indicated

the potential of a particulate mechanics approach to explain

the observed behavior. This is further strengthened by the

findings of earlier analytical work by Duffy and Mindlin

(1957), Deresiewicz (1958a), Duffy (1959), and others.

Consequently, it is generally accepted that at small strains - .

the behavior of a granular medium is governed by the elasticity

of the particles (i.e. the force-displacement nonlinearity at

the interparticle contacts), while in the very large strain

range the geometrical arrangement and the kinematics of the

particles become dominant.

S%
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Although a number of analytical, experimental and

numerical particulate mechanics studies have been performed in

the past on regular and random arrays of spheres, their scope

has been limited by the available computer capabilities and the

lack of a realistic force-deformation law at the intergranular

contacts. In the last few years the wider availability of

supercomputers for basic engineering research and the N

development, at RPI, of a general solution to the Hertz-Mindlin

problem at the contact between two identical elastic, rough

spheres (Seridi and Dobry, 1984, Dobry et al, 1988) have

significantly improved the situation. This solution, coded as

program CONTACT, could now be used as a subroutine in a finite

element program which describes the stress-strain response of %

granular soil. This was done as part of the current AFOSR

sponsored research, and Petrakis and Dobry (1987, 1988a, 1988b)

used the above relationship in a nonlinear finite element

scheme to succesfully predict the stress-strain response of a

regular/random array of equal spheres.
,b'p.
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RANDOM ARRAYS AND TFE DISTINCT ELEMENT METHOD

Several approaches have been used to model the effect of

randomness and deviations from regularity in arrays of equal or

unequal spheres. Serrano and Rodrigues-Ortiz (1973) suggested :4'
a method for generating a random configuration of unequal disks

or spheres having a prescribed grain size distribution.

Cundall and Strack (1979) used a similar approach in conjuction

with their "distinct element method" to succesfully simulate

the mechanical response of arrays and disks and spheres under a

variety of loading conditions. In their method, an explicit

Ifinite difference formulation is used to determine the static

response of the array to applied strains (program TRUBAL) or to

a boundary displacement (program BALL).

TRUBAL uses a periodic space in a form of a cube (3-D) or

square (2-D), such as that of Fig. 2, to minimize the effect of

the boundaries and allow the use of a relatively small number

of particles. A uniform strain field is applied to all

particles and the corresponding contact forces are calculated

from the relative displacements between neighboring spheres.

Initially, the program used an arbitrary, linear, non pressure

dependent law to describe the force-deformation behavior at

each interparticle cointact; in a later version of the program

(Zhang and Cundall, 1986) a linear pressure dependent
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force-deformation relationship was introduced. As illustrated

by Fig. 3, these contact forces, Pi, produce in each sphere a

resultant unbalanced force, ZPi , and unbalanced moment, ZMi ,

which induce linear and angular accelerations in the particle.

These accelerations are used in turn to compute a new particle

position at the end of a time increment, At, and new contact

forces. The process is repeated until static equilibrium is

achieved (M. = ZP. 0). The method has the advantage of

decreasing substantially the required computer memory, as no

large stiffness matrices need to be calculated and inverted.

However, the execution time is large due to the great number of

iterations needed to assure static equilibrium.

Cundall and Strack (1979), Strack and Cundall (1984) and

Zhang and Cundall (1986) have used BALL and TRUBAL for

succesful simulations of monotonic direct simple shear and

compression triaxial tests.

The available program TRUBAL (Strack and Cundall, 1984)

was modified at RPI by Ng and Dobry (1988) within another, NSF

sponsored project, by replacing the existing arbitrary linearly

elastic-perfectly plastic, non pressure dependent,

force-displacement relation at the intergranular contacts, by

the more realistic and rigorous Hertz-Mindlin contact law.

This was accomplished by attaching the program CONTACT

i -
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described previously, as a subroutine in TRUBAL (Table 1). The

new modified program was named CONBAL-2 (CONtact truBAL in

2-dimensions). CONBAL-2 is a two-dimensional version of TRUBAL

which incorporates CONTACT and has also been modified to run

more efficiently on the computer. Furthermore, CONBAL-2 does O

not allow any rotation or rolling of the particles, as this

causes as yet unsolved problems in the numerical simulations.

The 2-D character and lack of particle rotation in CONBAL-2

makes the array somewhat stronger than actual, 3-D random

arrays and soils; Ng and Dobry (1988) have approximately

corrected for this by reducing the interparticle angle of

friction. Therefore, CONBAL-2 is very similar to the original

program TRUBAL, except for the two differences just noted, and

for the very important introduction of the effect of the normal

force which is now rigorously modelled by the

Hertz-Mindlin-Dobry algorithm.

The accuracy of CONBAL-2 was checked by comparing the A.

results of a simulation of monotonic pure shear loading on an

isotropically compressed simple cubic array of quartz spheres,

to the rigorous solution obtained by Deresiewicz (1958). The

"window" of the nine identical spheres used in the CONBAL-2

simulation appears in Figure 4. The results of the numerical

simulation are plotted in Figure 4 (solid line), and are in

I
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excellent agreement with the rigorous solution (crosses).

Additional numerical simulations appear in Ng and Dobry (1988);

they include a number of large strain numerical experiments on

random arrays of equal or unequal quartz spheres under cyclic

and static, drained and undrained conditions. The results of

these simulations are in excellent agreement with comparable

experimental data on granular soils reported in the literature.
Moreover, CONBAL-2 has shown to have considerable predictive

power. For example, Ng and Dobry (1988) subjected the 2-D

array of 57 unequal spheres shown in Fig. 5, to a monotonical

constant-volume uniaxial compression, after the array had been

consolidated under an isotropic pressure, W-0, of 3.4 kgf/cm2.

This was done by increasing the vertical stress, a1, acting on

the array, while varying the horizontal compressive stress, a2,

as much as necessary to keep the volume constant. To model the

situation during the corresponding undrained compression

"triaxial" test in which the "cell pressure" would be kept

2 3 4constant at vo=3.4 kgf/cm , a pore water pressure" u=-( 2-3.4)

was defined.

The results of this simulation are summarized in Fig. 6.

The figure includes the calculated axial stress-strain curve in

Fig. 6a, the variation of pore pressure, u, vs axial strain in

Fig. 6b, and the effective stress path in Fig. 6c. The

NA
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behavior of the granular soil simulated is clearly dilative; it

is accurately modelled by CONBAL-2, which yields results very

similar to those measured in undrained triaxial tests on

uniform, rounded, dense Ottawa sand, such as those of Vaid and

Chern (1983) (specimen S-3), also included in Fig. 6. At first

glance they may not look comparable; however, the scales are

different and, with this in mind, it may be seen that the

stress-strain, pore pressure-strain curves and the stress path

on the j-q space, are remarkably similar between specimen S-3

and the numerical simulation.

IF



NUMERICAL SIMULATIONS OF THE SMALL STRAIN BEHAVIOR OF QUARTZ

SAND

After program CONBAL-2 was checked and became ready to

use, a copy was made available to this AFOSR project for

research on the stress-strain behavior and development of a

constitutive relation for dry granual soil.

As a first step, it was decided to start simulating

phenomena in the small strain range, and at a later stage focus

on the large strain, fully nonlinear inelastic behavior.

Furthermore, it was also decided to compare the results of

CONBAL-2 with answers obtained using the analytical and

numerical procedures previously developed in this project by

Petrakis and Dobry (1986, 1987), as well as with experimental

data in the literature.

Random arrays of eaual spheres were generated first, since

the previous analytical and numerical methods were developed .o

for equal spheres and much available experimental data are

obtained on uniform sand. Moreover, the force-deformation

relations at the interparticle contacts developed by Hertz

(1882), Cattaneo (1938), Mindlin (1949) and Mindlin and

Deresiewicz (1953) apply only to equal spheres of the same

material; subroutine CONTACT is based on these formulations and

cannot, in principle, model the contact behavior of unequal or
4
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dissimilar spheres. Therefore, program CONBAL-2 yields

rigorous results only when arrays of equal spheres are

generated; however, the same program, with certain assumptions,

can handle in first approximation moderately unequal spheres of

the same material, provided that their diameters are not very

different. In this section, results on packings of equal

spheres will be presented, together with some results on an

array of moderately unequal spheres.

i)Isotropically Compressed Random Arrays of Spheres

Two different 2-D random arrays of 477 identical particles

having the properties of quartz (Gs= 295182 kgf/cm 2 , s=0.15,

f=0.5, White, 1964), were generated using CONBAL-2. In the

following distinct element simulations, f=0.35 was used instead

of f-0.5 to correct for the effects of 2-D and absence of

particle rotation as previously discussed. The first array

was a very loose one, with an average coordination number, CN

(number of contacts per sphere), of 2.1, while the second was S

medium dense with CN=3.0. It should be noted that when As N

computing the average number of contacts per sphere in a random

array, all spheres, including those with no contacts, are S

counted, and this causes the average coordination number to be

low. These two arrays were then subjected to three different :

values of isotropic pressure (ao= 0.91, 3.34 and 6.98 kgf/cm 2),
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without significant change in their average number of contacts.

The configuration of the second assemblage, with CN-3.0,

and subjected to a11=022= 00= 0.91 kgf/cm 2 is shown in Fig. 7.

The rectangles in this figure represent the magnitudes and

directions of the contact forces; there are four different

rectangle widths, each one of them corresponding to a range of

forces between four equal fractions of the maximum computed

contact force. For example, if the maximum contact force is F

kgf, the narrowest rectangle stands for the range of forces

between 0 and F/4 kgf, the next wider rectangle for the range

of forces between F/4 and F/2 kgf, etc. It can be also •

observed that this assemblage of equal spheres has crystalized;

that is, areas of regular packing appear within the random

structure. This is in agreement with the experimental findings

of Smith et al (1929), Bernal and Mason (1960), Bernal et al

(1964), Davis and Deresiewicz (1974), Shahinpoor and Shahrpass

(1982) and others, reported in Petrakis and Dobry (1986,

1988a), who proposed that a random packing of equal spheres can

be represented by a combination of regular arrays. Some of

these regular packings in Fig. 7 are not subjected to any

contact force, with the forces being supported through arching

by surrounding packings. This crystalization has lumped the

array into N constituents, where N is the number of different

": ' " ..
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packings within the aggregate, and thus has increased the

characteristic size of the smallest constituent. As a result,

the array is not completely isotropic under isotropic stress; a

much larger r 'ber of spheres than 477 is needed in order to

have a uniform spatial distribution of the crystalized regions

and achieve a statistically isotropic medium. Moreover, it can

be seen in Fig. 7 that the applied stresses are mainly

transmitted through columns of particles, in which all contacts

along the column axis experience approximately the same contact

force. These contact force directions cover a large spectrum

of angles, with perhaps some preference toward the two

directions parallel to the boundaries. These conclusions

obtained from a visual inspection of Fig. 7 are also

illustrated in Figure 8, where the frequency distribution of

contact angles is shown in a polar plot together with other

micromechanical statistics, such as the frequency distributions

of mobilized angle (angle between contact force and contact

normal), coordination number and contact force. This

477-particle packing can be approximated as isotropic under its

current isotropic loading, if the effect of the orientation of

the contacts along the loading directions is smoothed in Figure

8.

VL
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The two 477-particle random arrays with average

coordination numbers CN=2.1 and 3.0, were subsequently used to

compute the small strain shear modulus, Gmax' under isotropic

pressure. For this, both random packings were subjected to a

small increment of macroscopic shear strain, dT=lXlO -6 , the

corresponding macroscopic shear stress, dr, was calculated, and

the shear modulus was computed as Gmax=d/d-u. This was done

for both arrays at the three confining pressures a0= 0.91, 3.34

and 6.98 kgf/cm2  The resulting shear modulus, Gmax has been

plotted versus a and the coordination number in Fig. 9, which

also includes the small strain shear modulus for the simple

cubic array in two dimensions (CN=4). For a given a0 the shear

modulus in Figure 9 is approximately linearly proportional to

CN, similar to the analytical results reported by Yanagisawa

(1983) and Petrakis and Dobry (1986, 1988a), indicating that

the stiffness of a packing of spheres is controlled by both

normal stress and the number of load transmitting contacts. 0

Since most contacts have not failed in the random array of Fig.

7 (see plot of mobilized angle in Fig. 8) the whole granular

assembly behaves, through its contacts, like a nonlinear truss

whose stiffness is increased when new members are added. As

expected, the deformation characteristics of the material of

the particles control the macroscopic stress-strain response of

Z0
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this granular medium under isotropic pressure, with CN being

the other major factor. The same plot may also be interpreted

as a plot of the shear wave velocity, Vs , versus the

coordination number, CN, if it is assumed that the wave length

is significantly larger than the radius of the spheres.

Figure 10 contains the above data as well as points

derived by i) the Self Consistent Method (Petrakis and Dobry,

1986, 1988a); ii) analytical solutions for regular arrays; and

finally, iii) the analytical expressions recently reported by

Walton (1997), for random packings of equal spheres. Figure 10

is for the same three values of confining pressure, vo - 0.91,
2]

3.34 and 6.98 kgf/cm2. Walton, by considering the pressure

dependent force-deformation behavior of both normal and

tangential compliances at the interparticle contacts, derived

the following expressions for the two elastic moduli (Lame
constants), and - Gm, of a random packing of equal

max'

elastic spheres with an infinite coefficient of friction,

subjected to isotropic compression, 00:

, C 302(CN) 2ao 1/3= c l(4)
1o(2B + C) (

, = Gmax =(5B+C) 30 2 (CN)2 ao 1/3 (5 .* ,a, =Gmax = B J(5) .::"1.
10( 2B + C) •

I
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#=(l-n), where n is the average porosity of the medium, B and C

are constants which depend on the material properties of the

spheres, us and vs, and CN is the average coordination number.

In Fig. 10, the points derived by the Self-Consistent

Method and Eqs. 4 and 5, are the result of a three dimensional 7A

analysis, unlike the points in Fig. 9 which are for two

dimensions. Since the simple cubic array appears in both plots

with coordination numbers CN=4 (2-D) and CN-6 (3-D), but with

the same value of shear modulus, Gm=u , it was decided to -2

multiply the coordination number of all 2-D distinct element

simulations by 6/4=1.5, to approximately "adjust" for the

additional third dimension. Furthermore, since the 3-D Self

Consistent Method was applied using the same value of quartz

modulus for the spheres as used in the other methods, but with

Poisson's ratio of the spheres, Vs=0, in order to eliminate the

anisotropy inherent to the cubic arrays (Petrakis and Dobry,

1986, 1988a), Eqs 4 and 5 were modified accordingly.
. •

Specifically, for vs=0, X and C become 0 and B-i/(2u ). The

final result is the very consistent plot in Fig. 10 using

points from four different methods; they essentially confirm -<

the hypothesis presented by Yanagisawa (1983.) and Petrakis and

Dobry (1986) that the small strain shear modulus, Gmax , of a

random array of equal spheres is essentially a linear function
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of the average number of contacts per particle. In Eq. 5 the

relation between Gmax and CN is not linear but the product of

the multiplication of the two factors: porosity, n, and CN,

results in an essentially linear relationship between U =Gmax

and CN, once the influence of n on CN is considered.

ii)Anisotropically Compressed Random Arrays of Spheres

The same array already discussed, with 477 equal, elastic

spheres and coordination number, CN=3, consolidated

isotropically at 01 = a22 = 00= 0.91 kgf/cm2 (Fig. 7) was

further loaded under biaxial compression to 022 ' 2.33 kgf/cm 2 ,

while keeping a11 constant. The stress path appears in Fig. 11

as stress path (b). This was done to: i) investigate the

influence of the magnitude and direction of the principal

stresses on the velocity of longitudinal waves, Vp, propagating

through this medium, ii) interpret the experimental findings of

Kopperman et al (1982), and iii) verify the findings of the

nonlinear finite element model presented by Petrakis and Dobry

(1987, 1988b).

To compute the wave velocities, Vp, the constrained moduli
2 2

D iiV pp, were calculated first as follows: once the desired

stress ratio, K= 1/a2=o22/ail, was reached at specific points

along stress path (b) in Fig. 11, very small strain increments,

d.ll, d'22, equal to 1.062X10 -6 were applied to the array with '
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appropriate signs. The corresponding stress increments do11 ,

do22 were computed, and finally, the small strain constrained

moduli D -do. /d, were calculated both in the direction of

the major (aI=a and minor (a2=i principal stresses. The(1=022) (2=11)

results of these simulations are shown in Fig. 12, where the

small strain constrained moduli of the random packing at every

stress ratio K, D K ), normalized by the constrained modulus

under the initial isotropic pressure D I) ' are plotted against

the stress ratio, K=a22 / a1i=oI/02. Figure 12 also includes

data points from a number of experiments on sand performed at

the University of Texas by Kopperman et al (1982), and results

of the nonlinear finite element model proposed by Petrakis and

Dobry (1987), all performed under analogous conditions to those "4. , 4.

of the CONBAL-2 nonlinear distinct element simulation.

The agreement between all normalized results in Figure 12,

is excellent, and a straight line of equation D(K)/D(l) -
22 22 =

(a22 /0 1 ) .  K 38 could be fitted to all numerical and

experimental data points included in the figure. It should be

noted that, if the change in sand density as K increases is

neglected, D22 /D(l) = (K ( From their experiments in

sand, Kopperman et al (1982) found that Eq. 2 was applicable
with 220OL'290 and m=0.2. This gives 22(K) /D22(1)=K very

similar to the line in Fig. 12. Furthermore, it was found that

-%

;4 2
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the actual values of Vp calculated by CONBAL-2 for the array of

Fig. 7, are within 10% of those measured by Kopperman et al

(1982). Figure 12 shows that the z.iain conclusion obtained from

the University of Texas laboratory results, that the P-wave

velocity (V = VD/0) propagating along a principal stress

direction is only a function of that principal stress, is fully

predicted by the nonlinear distinct element method. Again,

this is an effect of the particulate nature of the soil, which

can not be interpreted and reproduced analytically unless this

particulate nature is taken into account.

Figures 13 and 14 depict the positions of the spheres, the

relative magnitudes and directions of the contact forces, and

the associated micromechanical statistical information, at the

last stage of anisotropic loading, at K=a 22 / 11 =2.33/0.91=2.56.

This is the last stage of the biaxial loading simulation, whose

particle configuration and micromechanical statistics under the 
V- *.

initial isotropic pressure 0o= a11=a22=0.91 kgf/cm, (K=l) was

shown in Figs. 7 and 8. 
.

Comparing the array configurations of the above two :

loading stages in Figs. 7 and 13, it can be seen that the array

remains crystalized throughout the loading process, and that a

number of the regular packings within the array remain stress

free.

JiVi*-* .-~ni ' 1P,'. - .
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Similarly to Fig. 7, the four different widths of the

rectangles in Fig. 13 represent the ranges of intensity of

contact forces relative to the maximum contact force in each

case. When the random array is subjected to isotropic

pressure, the distribution of the contact forces was more or

less uniform, with similar contact forces in all directions

(Fig. 8). On the other hand, and as shown in Fig. 13 and 14,

after the array was loaded vertically while the horizontal

stress, ll, was kept constant, the number of contacts in the

vertical direction increased and most of the columns

transmitting loads are now essentially vertical or horizontal.

These columns are similar to the "stiff chains" reported by

Cundall and Strack (1983). The number of contacts in the

horizontal direction has somewhat decreased, while in all other

directions has decreased substantially. The magnitudes of the

contact forces in the vertical contacts have also increased.

Figure 14 contains the micromechanical statistics

calculated for the anisotropic stress condition of Fig. 13, ..

including frequency distributions of contact angle, mobilized

angle, coordination number and magnitude of contact force. The

polar plot of frequency distribution of contact angle,

quantifies the increase in the number of contacts in the

vertical direction, previously discussed, as well as the
.0

I
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decrease of number of contacts in the other directions. Figure

14 also shows that at this point of the biaxial compression

loading most contacts have failed, the particles have

rearranged themselves to more stable conditions, and the

distribution of coordination numbers has changed little. The

polar plot of the frequency distribution of contact angle in

Fig. 14 resembles a cross, with most of the contacts aligned

parallel to the applied principal stresses. This is consistent

with the vertical/horizontal columns transmitting loads in Fig.

13, and is different from the structure of the array under

isotropic stress presented in Figs. 7 and 8. There, the S
frequency distributions of contact angle and contact forces

were approximately uniform and few contacts had failed.

Based on the results of the numerical simulations and the

above discussion, it is concluded that changes in the structure

of the random packings and granular soils are responsible for

the observed macroscopic behavior, and specifically for the

dependence of the compressional wave velocity only on the

principal stress in the direction of wave propagation. Under

isotropic loading, the orientations of the contacts have a more

or less uniform distribution, the material behaves

isotropically and the wave propagation velocity is a function

of the isotropic stress, o" Under biaxial (2-D) or triaxial
0S

Ir X~
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(3-D) compression, a significant number of contacts is gained

in the direction of the increased major principal stress, oa,

while contacts are lost in all other directions. In the other

two principal directions in which the stresses a2 (and 03) are

kept constant, the number of contacts decreases, but not e

considerably, while many contacts are lost in all non principal

directions. These contacts along principal directions form

"branches" or "stiff chains" parallel to the principal stresses

which transmit most of the applied principal stresses from

boundary to boundary. The result is a structure reminiscent of

a simple cubic array loaded by stresses 0l, 02 and 3 parallel 0

to the main axes of the array, and with the effect of each

principal stress being uncoupled from the other two. This

uncoupling, which in the simple cubic array happens naturally

due to thp leometry of the array, develops in the random array

as a cc equence of these stiff columns or "branches" of

particles which carry the applied load. Therefore, as in the

case of the simple cubic array (Petrakis and Dobry 1986, 1987),

the longitudinal modulus, D, in any principal direction is a

function only of the stress in this direction and is unaffected

by variations in the stresses in the other directions. ..Vo

Although the CONBAL-2 runs discussed here were two dimensional,

the authors postulate that the same phenomenon occurs in oS



_0

24 S

three-dimensions with the formation of stiff chains in three

directions instead of two. It is well known (Deresiewicz 1958)

that the shear moduli of the simple cubic array depend only on

two principal stresses and are independent of the third

principal stress. Since the moduli of the random array are

expected to be of similar nature due to the 3-D "stiff columns"

just postulated, it is believed that this is the reason why the

shear moduli (or S-wave velocities) have been observed to

depend only on the principal stresses in the direction of wave

propagation and particle motion. However, this hypothesis

should be verified once the 3-D version of CONBAL-2 is

developed.

To further demonstrate the fact that the P-wave

propagation velocity (or the constrained modulus) is a function

of the principal stress in that direction only, the same random

array of 477 equal spheres was subjected to a biaxial

compress ion-extens ion loading simulation under constant mean

2stress, co-0.91 kgf/cm 2 . The corresponding stress path (a) is

shown in Fig. 11. The vertical stress, 022, was increased up

to 1.374, while the horizontal stress 011 was decreased down to

0.447 kgf/cm 2 (Fig. 15). Thus, ao= 1/2(l.374+0.447)=0.91 as
D(W D(1) "

before. Again, the normalized constrained moduli / ()
ii

were computed at specific values of the stress ratio, K=o /a0,

i 0-.
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in both directions aI and a22" Note that for any set of

specific values of a22 and aiI' it is defined K=o22/o for

(K)D (K) ,and K /a for D(K) (K) If the moduli were a
1 2 bii 0 i

function of the mean stress (i.e if Eq. 1 were true), the

P-wave propagation velocity (and the modulus) would be

unaffected by the changes in the magnitude of the principal

stresses. D(K) would be always the same in both directions,11

and the plot of D(K)/D versus K in Fig. 16 would be a22 22

horizontal straight line. The normalized constrained moduli

calculated with CONBAL-2 are plotted vs. K in Fig. 16. As a22

increases, D2( increases in the figure. Simultaneously, as

a(K decreases, decreases, and the plot of D(K)/D versus11l 11rass 1 ii/iivess'

K follows a consistent curve valid for both directions.

Therefore, Fig. 16 confirms again that the constrained moduli,

Dii , are affected by the principal stress in the direction of

loading only and are completely independent of the mean stress.

Therefore, based on the above results and those of the biaxial

loading simulation (Fig. 12), it is predicted that a granular

soil does not behave as a linearly elastic isotropic solid at

small strains, but it changes its order of elastic symmetry

depending on the applied principal stresses. Consequently,

expressions of the type of Eq. 1 can be used only for R.

isotropically consolidated soils; in all other cases, relations
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of the type of Eqs. 2 and 3 should be used. The contact force

distribution, formation of stiff columns and micromechanical

statistics of this array at the end of the loading path (Figs.

15 and 17) are very similar to those obtained in biaxial

compression under different anisotropic stress conditions
S

(Figure 13 and 14). The crystalization appears once more;

since most initial contacts have failed at this point, new have

formed along the direction of the major applied principal

stress. At the same time, there has been a substantial

decrease in the number of contacts in the horizontal direction,

and stiff columns of particles have appeared both vertically

and horizontally.

Finally, in order to be able to generalize the above

findings for the case of uniform random arrays of unequal

quartz spheres, a random array of 531 particles of two

different diameters was generated. This aggregate was composed

of 168 spheres of radius R1 and of 363 spheres of R2 . The
-S

ratio RI/R was set to 1.5, and thus not very different from

unity, so that the Mindlin-Deresiewicz theory could be applied

by using the concept of "equivalent radius". This equivalent

radius, Re=2RIR2 /(RI+R 2 ), where R and R are the radii of the

two particles in contact, has been used in the past in the case

of unequal cylinders (Poritsky, 1950), and represents an
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approximation to an unknown exact solution. It is derived from

the Hertz (1882) theory for smooth spheres (f=0) and can be

applied to the case of rough spheres as a first approximation

(Ng and Dobry, 1988)

The above array was first subjected to isotropic pressure,

ao= 1.31 kgf/cm 2; the corresponding geometric and statistical

information is shown in Figs. 18 and 19. As the spheres are

not identical, now there is no crystalization and the 531

sphere aggregate is almost isotropic, as can be seen from the

uniform distribution of contact angles in the polar plot of

Fig. 19 (compare with Fig. 8). Therefore, this 531-particle

array exhibits a higher level of symmetry than the 477-sphere

packing, and is taken to be isotropic. Even in this case, in

which there is no crystalization, there is still a number of

particles which are not in contact and do not carry any load.

Moreover, when comparing this packing in Fig. 18 to the 477

equal sphere assemblage in Fig. 7, no clear system of parallel

columns of particles can be detected transfering approximately

the same forces across* the whole array, but instead, the

magnitude of the contact force varies with position.

The array was finally loaded under biaxial compression to

0223.32 kgf/cm2, while keeping ail constant as shown by stress

path (c) in Fig. 11. The array configuration and the contact

2



28

AIVJ

forces at the end of the loading path are shown in Figure 20,

with the corresponding micromechanical statistics presented in

Fig. 21. As we can see in both figures, the contacts have been

more or less eliminated in all directions except the major and

minor stress directions al=a22 and a2 =all. The number of

contacts has doubled in the a22 direction and has also

increased more moderately in the all direction. Most contacts

have failed, and again, there are still some spheres which are
e

not subjected to any contact force. Finally, the contact

forces in this case vary again with the position of each

particle. Vertical and horizontal load transmitting columns or

"stiff chains" are present in Fig. 20, but they are less

continuous and not so obvious as they were in the crystalized

equal sphere array of Fig. 13. A close comparison between this

array of unequal spheres in Fig. 20 to the equal sphere array

of Fig. 13, shows that while their structures (fabrics) are

fundamentally dissimilar (crystalization vs. randomness) and
S

the distribution of forces within them very different, they

both form the majority of their contacts along the directions

of the applied principal stresses, when compressed biaxially.

It is also interesting that the frequency distributions of the

contact angle in all simulations at the end of their

corresponding biaxial loading simulations (Figs. 14, 17, and
OS
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21) have the distinctive "cross" pattern with the contacts

aligned along the directions of the applied principal stresses.

The normalized constrained moduli were also computed for

the array of Fig. 20 at various values of the stress ratio,

K=O22/aill and they are plotted versus K in Fig. 22. Once more

the moduli (and consequently, the P-wave velocity) are affected

in first approximation by the principal stress in that

direction. In addition to the results of the simulation on the S

unequal sphere array of Fig. 20, Fig. 22 also includes all

points of Fig. 11, that is: the experimental data of Professor

Stokoe and his co-workers, the nonlinear finite element results

of Petrakis and Dobry (1987, 1988), and finally the results of

the nonlinear distinct element method on the array of the 477

equal equrl spheres. All points are in excellent agreement,

thus verifying the accuracy and versatility of the approach,

and the validity of the conclusions reached for the constrained

modulus, D and P-wave velocity, Vp, of random arrays of
sspheres and of granular soils. :,

. ,.

S•



30

CONCLUSION

A 2-D nonlinear distinct element simulation has been

presented which interprets the behavior of granular soil at

very small strains. This simulation is based on an incremental

solution to the nonlinear problem of two spheres in contact

(program CONTACT), incorporated into the available distinct

element program TRUBAL. It has been found that this approach

not only interprets succesfully the small strain behavior of

granular soil, but it also provides a wealth of information on

the fabric changes during loading which were until now very

difficult to obtain. The results of these simulations on both

isotropically and anisotropically compressed random arrays of

equal and unequal spheres, are in excellent agreement with a
.4

number of previous analytical and numerical procedures, as well %

as with experimental data on sand in the literature. The

origin of the above phenomena is the changes in the structure

of the granular medium which occur when loaded, and

specifically, the formation of columns of particles supporting

approximately the same contact force along the directions of

the applied principal stresses. Therefore, the distribution

and magnitude of the contact forces are of great importance to

the macroscopic response of the medium. The above phenomena,

which are micromechanical in nature, can only be modelled %

'S
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analytically if the particulate nature of the soil is taken

into consideration and the contact forces are realistically

modelled.
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DISTINCT ELEMENT METHOD 4

(Programs BALL, TRUBAL developed by Peter Cundall)

P1
P2

=loop.

P4r

x Pi produces acceleration of particle
£ Mi produces angular acceleration (spin) of

particle

Acceleration and Spin Computed as if Neighboring
Particles did not exist. Time step is assumed to be
small such that accelerations and velocities are
constant in this small time.

Time t +t t

- Particle occupies new position due to acceleration
• New Pi's, Mi's are computed for new positions
* LPi, LMi and process is repeated.

Figure 3. Outline of the Main Features of the Distinct
Element Method
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Comparison Between Analytical and Numerical (CONBAL-2)results. (after Ng and Dobry, 1988)
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Figure 5. A Random, Periodic, 2-D Medium of 57 Elastic, Rough,
Quartz, Spheres, of two Radii (R /R -1. 5), Subjected to
Biaxial Compression. Note tkii " 'window" with the
representative random pattern (after Ng and Dobry,
1988)
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Figure 6. Stress-Strain Response of the Random Two-Dimensional %JArray of Figure 5 subjected to biaxial compression (a,
b, c) and Stress-Strain Response of Medium Dense sand
Under monotonic Compressive Loading (after Vaid and
Chern, 1983 - d, e, f, Test S-3;)

~j~:Figure reproduced after Ng and Dobry (1988).
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2

22" 0 -091 kgf/cu

-O0.91 kgf/cM2

Figure 7. 2-D Random Array of 477 Equal, Elastic, Rough, Quartz
Spherel Subjected to Isotropic Compression, a -0.91
kgf/cm .Note that this figure represents the *v'?ndov"
vith the representative random pattern.



451J~'.. ,. ~ /. '.i MM..., L~k \ .... "" N \W1~ w-j- . ~ - ~w,'~pq~~~I~tM r 'iW.W. I I ' - ~ 'h, '

, 1 :CLS

Ia.I
,m -1tO .S .00 0.00 + ONORr1LIZEO IILISED ANGLE

RREOUENCY DISTRIBUTION RREOUENCY DISTRIBUTIONOF CONTACT RNGLE OF NOBILIEOSED ANGLE

PREOUENCY DISTRIBUTION PREOUENCY DISTRIBUTION "'
OF CONTACT PERPGLCE OF MOBILISE ANGE

9x9

CL

dd

N,.

3 rT _

No. OF CONTACTS NO.MALIZED CONTACT FORCES

PREOUENCY DISTRIBUTION RREOUENCY DISTRIBUTION
OF CONTACT PER PARTICLE OF CONTACT FORCE

Figure 8. Statistical Information2 Regarding the Isotropic
Compression at O-0.91 kgf/cm of the 477-sphere medium S
of Figure 7. 0
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Figure 9. Shear Modulus, G ,Versus Coordination Number (CN %
-Number of Contact?%~r Sphere) for two Random Arrays

of 477 Equal, Quartz Spheres, and the Simple Cubic
Array (CN-4) .
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m Regular Cubic Arrays
0 Nonlinear Distinct Element Method
o Self Consistent Method (Petrakis & Dobry, 1986) 2
+ Walton (1987) 3 ao = 6.98 kgflcm

co =3.34 kgf/cm
2

oo =c 0.91 kgf/cm
2

-r

'3

'::.3)0 2.00 4.00 6.00 843O 10.00 12.00
COOROINRTION NUMBER

Figure 10.. Shear Modulus, G__. Versus CoriainNumber
for: i) two Random Ars of 477 Equal Spheres, i i)
Regular Arrays, and iii) Random Arrays of a given
Porosity by he Self Consistent Method (Petrakis and ,.-
Dobry, 1986) and the Analytical Expressions of Walton
(1987). All spheres have been assigned the properties
of quartz. :
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0.91 kg-f.c-. 9
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e~ Experiment (Kopperman et al., 1982) I
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N , Nonlinear F.E.M. (Petrakis & Dobry, 1987)

. , Nonlinear O.E.M. (477 particles)
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Figure ' Normalized Constrained Moduli, .. /D. Versus ,.%
;-ess Ratio, K-a /a a o/a CoAariin Between ,
Distinct Elewment, kinite--2E lent and experimental ,\
Results: (a) In the Direction of a~o and (b) in the
Direction of al (al is kept constan-F.'
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Figure 13. 2-D Random, Array of 477 Equal, Elastic, Quartz, '''

Spheres Subjected to Biaxial Compression.. 
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Figure 14. Statistical Information Regarding the Biaxial ,** S

Loading in Figure 13.
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Figure 15. 2-D Random Array of 477 Equal, Elastic, Quartz
Spheres Subjected to Biaxial Compression Extension with
Constant Mean Stress o 0. 91 kgf /cm.
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Figure 16. Normalized Constrained Moduli, D() D (i) Versu
the Stress Ratio, K-oi/a, f or the 6~s'e OAf Biaxial
Compression-Extension 2 hoaxing with Constant Mean,."" -.,
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Compression-Extension L~oading in Figure 1]5.,..
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-1 32 m1 kgf/cu
22 o

-1.32 kgf/cm2

Figure 18. 2-D Random Array of 531 Elastic, Quartz Spheres of
Two Radii (R 1/R 2:1.5) 2 Subjected to Isotropic
Compression uou~ 1.32 kgf/cm
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Figure 19. Statistical Information for the Isotropic
Compression Loading in Figure 18.
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Figure 20. 2-D Random Array of 531 Elastic, Quartz Spheres of
Tvo Radii (R /R2-1.5) Subjected to Biaxial Compression
Loading. 1
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Figure 21. Statistical Information for the Biaxial Loading in
Figure 20. -. %
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(a)

co Experiment (Kopperman et al., 1982)

Sc..x Nonlinear F.E.M. (Petrakis & Dobry, 1987)

& Nonlinear D.E.M. (531 particles)

0 1.5 , Nonlinear D.E.M. (477 particles)
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Figure 22. Normalized Constrained Moduli, D!.)/D (I )  Versus
Stress Ratio, K-o l/ - o /a All Dfjtinj Element,
Finite Element and E3periienlil Results. (a) In the
Direction of o22 , and (b)in the Direction of aii (a is
kept constant). 1
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